
Theoret. chim. Acta (Berl.) 31,183--188 (1973) 
�9 by Springer-Verlag 1973 

Commentationes 

The Numerical Integration of a Molecular 
Integral Using Two Different Techniques* 

D. Rees, Deborah J. Moore, and P. R. Taylor 
Mathematics Department, University of Nottingham 

Received March 30, 1973 

A two-electron integral which commonly occurs in molecular calculations is evaluated numerically 
using the different methods of Boys and Conroy and the results are discussed. 
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1. Introduction 

The purpose of the investigation was to consider an integral with a singular 
integrand which occurs quite often in electronic calculations and to evaluate it 
using the "diophantine-type" methods of Boys et al. [1, 2] and Conroy [3]. The 
integral chosen is the two-electron, one-centre integral 

e - ~ r l  -I~r2 
dr  I dr 2 . (1) 

r12 

This integral has the advantage of being evaluated analytically to give 

32rc2(cd + 3e/3 +/32) 
c~ 2/32(c~ +/3)3 , (2) 

thus making comparison with its numerical estimates possible. 

2. The Co-Ordinate System 

In both the numerical methods considered the spherical polar transformation 
of the co-ordinates of electron i (i = 1, 2) suggested by Boys and Handy [2-] was 
employed i.e. 

ri = A i ( q r j l  - qri) 

0 i = ~ (6q  5, - 15@, + 10qg) (3) 

q5 i = 27rqo~. 

This reduces the integral to the standard form 

1 1 

I" "" .[ f (q~,, qol,  qol, qr2, qo2, q4,~) dq  . (4) 
0 0 

* This paper was presented during the session on numerical integration methods for molecules 
of the I970 Quantum Theory Conference in Nottingham. It has been revised in the light of the 
interesting discussion which followed. 
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Also in both the procedures the scale factors A i (i = t, 2) were set equal to A in 
order to reduce the number of parameters. 

3. Boys' Method 

The transformation given by Eq. (3) transforms an integrand having a contin- 
uous derivative in polar co-ordinate space to an approximately periodic function. 
The Boys procedure gives an estimate of the integral by evaluating partial sums 
in which the integrand is evaluated at "diophantine" points in 3-space. Assuming 
that this procedure may be applied to integrands involving a singularity and 
generalizing it to the two-electron case, the partial sums are then given by 

1 N N 
~ f ( L t ,  L2) CO(LO CO(Lz), (5) 

N2 LI = I Lz= I 
where 

= oL, EL d 
(qr,, %) N '  N ' N ] '  ( i=1,2).  (6) qr~, 

In (5), f is the integrand and co a one-electron weight which is obtained from the 
one-electron contribution to the Jacobian of the transformation. Equation (6) 
involves N, the number of integration points per electron, and also fixed constants 
D and E both of which depend on N. 

4. The Singularity 

In order to prevent infinite contributions which arise when rl z = 0, the method 
introduced by Boys and Cook [4] of coping with the singularity was used so that 
1/r12 is replaced by 

( c~189 co~(L2)) -~ 
r3a2 + Z " (7) 

The only modification employed in (7) is to regard Z as a parameter rather than 
setting Z = 3 as suggested by Boys and Cook. 

5. Results 

The numerical estimate of the integral using Boys' method depends therefore 
on two parameters A and Z. 

Figur e 1 shows the variation with Z of the percentage errors in the estimates 
of the integral for e = 1,/~ = 2; in this case the scale factor was fixed at 2 (c.f. Fig. 2). 
For the range 0 < Z < 25, the integral estimates vary quite markedly with Z and 
give the correct result when Z ~- 16. It would therefore seem that the estimate of Z 
as approximately 3 arrived at by Boys and Cook using an electrostatic argument 
is not as satisfactory as Z = 16 as a parameter in the approximation for the 1/r12 
singularity. In Z > 16 the estimates become less accurate. This is to be expected 
since (7) approximates very closely to 1/r12 for large Z and thus introduces further 
inaccuracies into the calculation. 
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Figure 2 shows the variation of the percentage error of the estimate with scale 
factor A. Again e = i,/~ = 2 and Z was chosen as the Boys and Cook estimate of 3. 
The error varies markedly with A, and the best estimates have an error of about  
9-10% in the region 1 _< A _< 2. It is in this region that the integral estimates are 
least sensitive to the scale factor. 

Further calculation shows that if Z is increased to 16 the errors become much 
smaller and the integral estimates become much less sensitive to A. For example, 
when Z = 16, the percentage error is about 0.05 for 1 < A < 6. These results were 
computed for N - - 8 0  - i.e. using 6400 grid points. The previous results were 
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repeated for several different values of the parameters (c~,/3) confirming the fact 
that the choice of Z = 3 was far too small and that Z, in the neighbourhood of 16, 
gave much more accurate values of the estimates which were relatively insensitive 
to the choice of scale factor. 

6. Conroy's Method 

The method of Conroy [2] is based essentially on the approximation to this 
integral by the partial sum 

1 U-1 
M E (8) 

L = I  

where 9 is the product of the integrand and the Jacobian of the transformation; 
M is the number of sample points. In expression (8) 

= p / M ,  (9) 

where p is a six dimensional vector which is selected, having first chosen M, 
according to Conroy's prescription in which he lists optimised sets of M each with 
their respective optimised vector p. In (8) because the integral parts are subtracted 
off each component of L~,  the grid points lie inside the unit hypercube as is 
required from the transformation given by (3) (see also expression (4)). 

The function g in expression (8) is evaluated in a six dimensional configuration 
space as opposed to the two three dimensional spaces of each electron as in the 
Boys method. It is therefore possible to order the components of p to correspond 
to the components of the vector q given by (3), in several different ways. Cor- 
responding respectively to each of the components Pl,P2 . . . .  ,P6, the ordering 
qr,, qo,, qr q~2, qo2, qo2 and also the ordering q~l, qr~, qol, qo~, qr qo2 were con- 
sidered. It was generally found, however, that the former ordering gave better 
results than the latter, despite the fact that the latter ordering allows both the 
radial co-ordinates of the electrons to assume greater importance in the integral. 
This first ordering has been used in all subsequent results. 

One further point to note is that this integration procedure is such that the 
choice of integration points does not make ra2 small so that no special device for 
coping with the singularity need be introduced. The exceptional case, however, 
is that for which M is even in which case the point corresponding to L = M/2 makes 
r12 zero. In this case therefore the integration point corresponding to L = M/2 is 
omitted. 

7. Results 

Figure 3 shows the variation with the scale factor A of the percentage error 
of the integral estimate for a choice of 6044 and 9644 grid point respectively. For 
the choice of 6044 points the results are relatively insensitive to the scale factor 
and are particularly good for 2.5 _< A < 10 where the error is less than 1%. How- 
ever, if the number of points used is increased to 9644 the results are much more 
sensitive to the scale factor particularly at values of A greater than 10 where there 
is marked oscillation. In this case the optimum results again occur in the region 
2.5 _< A _< 10 but, despite the increased number of points, there is no improvement 
in the accuracy. 
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8. Discussion and Conclusion 

Both the methods of Conroy and Boys show that the results obtained are 
sensitive to the choice of scale factor (even for about 6000 grid points). It is, 
however, possible in estimating this integral to find for both methods ranges of A 
in which the estimates are optimum and least sensitive to the scale factor. In 
order to investigate the use of a different transformation from that given in (3), the 
alternative transformation 

r i = A ( q r ] l  - q r i )  2 (i = 1, 2) (10) 

was studied. The quadratic dependence of the ri on qi did in fact produce results 
which were less sensitive to A in both methods but the estimates were not as 
accurate. This alternative transformation did also predict the optimum value of Z 
for the Boys method as being approximately 22. Again confirming the choice of 
Z = 3 as being far too low. Concerning the Boys method generally, it is accepted 
that arguments in favour of this method as applied to a six dimensional integral 
are not as strong as those favouring its application to one of three dimensions, 
particularly if r12 occurs explicitly, and as a singularity, making the integrand 
and its derivatives no longer continuous. However it does seem that, although the 
method was not originally conceived with the idea of application to integrals with 
singularities such as 1/r12, this suggestion of coping with the singularity can be 
improved by using optimised parameters. 

Whereas the Boys method is essentially a one-electron, or three dimensional 
procedure, Conroy's method is essentially a configuration-space procedure. For 
6044 grid points, Conroy's procedure gave exceedingly accurate results for certain 
ranges of the scale factor. Further it has the advantage of requiring no special 
devices to deal with the singularity. However, the fact that at 9644 grid points the 
variation of the estimates with A were much larger than that for 6044 raises some 
quite serious objections. Any desirable numerical integration method using 9000 
points should produce results which are relatively insensitive to the scale factor A. 
The integral for the Boys procedure was not estimated using 9000 points so that 
no comparison can be made. 

In conclusion, ab init io molecular calculations in which very many integrals 
are numerically computed will certainly need procedures requiring a reduced 
number of integration points if the computing time is to be minimized. 



188 D. Rees et al. 

The possibility of using optimum parameters necessitating a smaller number 
of grid points in numerical integration techniques should therefore be further 
explored. 
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